A 29 year old Nigerian student, Bashir Dodo has been awarded with the “Best Student Paper” at the recently concluded industry-leading BIOIMAGING 2018 conference in Portugal. His work developed a technique for identifying and diagnosing damage to the human eye.
He is a Doctoral candidate at the Department of Computer Science at Brunel University London. He also works in the university where his focus is on Computer Graphics with his project topic titled ‘Intra-retinal Layer Segmentation in Spectral Domain Optical Coherence Tomography Images.’
EduCeleb.com reports that Mr Dodo also holds a Bachelor’s degree in Software Engineering and a Master’s degree in Computer Systems Engineering (Software Systems) at the University of East London.
The research work showed a new algorithm for Optical Coherence Tomography (OCT) equipment which can automatically segment images of the retina into distinct layers.
This new technique which can separate the retina into seven individual layers, could improve the accuracy and speed of diagnosis, and help save the sight of patients by identifying damage earlier.
Based on the psychological concept of similarity, Bashir used the ideas of continuity and discontinuity to develop an OCT algorithm that can identify where one layer of the retina transitions to the next.
OCT machines are used by ophthalmologists to produce non-invasive three-dimensional photographs of a patient’s retina, which are used in the diagnosis of eye-related disease.
“Layer segmentation is one of the early processes of OCT retina image analysis, and already plays an important role in clinics,” said Bashir.
“For example, the thickness profile of the Retinal Nerve Fibre Layer – which can be calculated directly from the segment layer – is used in the diagnosis of glaucoma, which is one of the most common causes of sight-loss worldwide.
“Automatically segmenting the layers could provide critical information for abnormality detection by comparing them to the average population, and monitoring the progress of disease against previous scans.”
Whilst doctors are currently able to identify the layers manually from OCT images, Bashir’s new technique automatically segments images of the retina, allowing specialists to spot abnormalities quicker and better track the progress of medication.
“It is evident that prior knowledge plays an important role in diagnosis,” said Bashir.
“Therefore, using automated methods to look back through medical records or ophthalmology literature has great potential to influence how this field progresses.”
For information on Press Releases, Photos, Promotional Events and Adverts, Please message us on WhatsApp via (+234) 09052129258, 08124662170 or send an email to: info@educeleb.com.